324. Molecular Polarisability. Conformations and Polarities of Triphenyl Derivatives of Group Vв Elements.

By M. J. Aroney, R. J. W. Le Fèvre, and J. D. Saxby.

As solutes in benzene, the molecules $\mathrm{NPh}_{3}, \mathrm{PPh}_{3}, \mathrm{AsPh}_{3}, \mathrm{SbPh}_{3}$, and BiPh_{3} show, respectively, dipole moments of $0.52,1.50,1.23,0.77$, and ca. 0 D , and molar Kerr constants ($\times 10^{12}$) of $33 \cdot 3,-100,-37 \cdot 6,-6 \cdot 6$, and $+\mathbf{7 . 1}$. These data are interpreted as indicating rotations of the phenyl groups by angles ϕ from conformations, having $\phi=0$, in which the Ph planes intersect along the lines of action of the resultant moments; values of ϕ for the five derivatives named appear as $62^{\circ}, 59^{\circ}, 53^{\circ}, 41^{\circ}$, and $23^{\circ} \pm 4^{\circ}$ or $51^{\circ} \pm 3^{\circ}$.

Measurements, here recorded, of the molar Kerr constants, refractivities, and dipole moments for the series $\mathrm{NPh}_{3}, \mathrm{PPh}_{3}, \mathrm{AsPh}_{3}, \mathrm{SbPh}_{3}$, and BiPh_{3} as solutes in benzene were started in the hope that, through considerations of anisotropic polarisabilities, information on the structures and conformations of these molecules would be provided.

Experimental

Materials, Apparatus, etc.-Substances were presented to us by the following: Metal and Thermit Corporation, U.S.A. (triphenyl-phosphine, -stibine, and -bismuthine); Dr. B. O. West, University of Adelaide (triphenyl-phosphine and -arsine) ; Dr. N. A. Gibson, Mr. J. W. Hosking, and Mr. D. C. Weatherburn, University of Sydney (triphenylarsine). Recrystallisation from
alcohol yielded: triphenylphosphine (m. p. 78-79 ${ }^{\circ}$), triphenylarsine (m. p. 60-61 ${ }^{\circ}$), triphenylstibine (m. p. 53-54 ${ }^{\circ}$), triphenylbismuthine (m. p. 78°). Thiophen-free benzene, as solvent, was dried (Na) for 1 week before use. Symbols, methods of calculation, and headings used in

Table 1.

Incremental Kerr constants, refractive indexes, dielectric constants, and densities for solutions in benzene at 25°.

Triphenylphosphine						
$\begin{aligned} & 10^{5} w_{2} \\ & 10^{7} \Delta B \end{aligned}$	$\begin{gathered} 1607 \\ -0.033 \end{gathered}$	$\begin{gathered} 3383 \\ -0.062 \end{gathered}$	$\begin{gathered} 3717 \\ -0.086 \end{gathered}$	$\begin{gathered} 4296 \\ -0.080 \end{gathered}$	$\begin{gathered} 4813 \\ -0 \cdot 109 \end{gathered}$	
whence $\sum 10^{7} \Delta B / \sum w_{2}=-2.08$						
$10^{5} w_{2}$	1372	2203	2324	2462	2551	2806
$10^{4} \Delta n$	-	26	29	33	-	-
ε^{25}	$2 \cdot 2914$	$2 \cdot 3019$	$2 \cdot 3054$	3	2.3082	-
d_{4}^{25}	-	$0 \cdot 87838$	0.87855	-	$0 \cdot 87899$	$0 \cdot 87985$
$10^{5} w_{2}$	3010	3938	4127	4133	5081	
$10^{4} \Delta n$	35	-	-	55	-	
ε^{23}.	-	$2 \cdot 3276$	-	2.3285	$2 \cdot 3439$	
d_{4}^{25}	-	$0 \cdot 88207$	$0 \cdot 88225$	$0 \cdot 88215$	$0 \cdot 88425$	
whence $\sum \Delta n / \sum w_{2}=0.126 ; \sum \Delta \varepsilon / \sum w_{2}=1.39 ; \sum \Delta d / \sum w_{2}=0.207$						

Triphenylarsine

10^{5}	1394	1578	2028	2278	2523	2664	2778	3626	4034	4280
$10^{7} \mathrm{~A} B$	-0.010	-0.011					-0.022	-0.027	-0.030	-0.028
$10^{4} \Delta n$.	-					30	31			48
ε^{25}	-	$2 \cdot 2874$	\cdots	-	2.2945	2.2981	$2 \cdot 2995$	$2 \cdot 3082$	-	2.3106
d_{4}^{25}	87775		$0 \cdot 87966$		0.88116	0.88152			$0 \cdot 88536$	$0 \cdot 88624$
$10^{7} \Delta B / \sum w_{2}=-0.724 ; \sum \Delta n / \sum w_{2}=0.112 ; \sum \Delta \varepsilon / \sum w_{2}=0.93 ; \sum \Delta d / \sum w_{2}=$										

Triphenylstibine

Triphenylbismuthine						
$10^{5} w_{2}$	1068	2476	2781	3084	3936	4718
$10^{4} \Delta n$		29	32	33	40	50
ε^{25}	2.2762	$2 \cdot 2817$	2.2830	2.2837	$2 \cdot 2876$	$2 \cdot 2903$
d_{4}^{25}	0.87861	0.88503	$0 \cdot 88676$	0.88823	$0 \cdot 89210$	$0 \cdot 89590$

whence $\sum \Delta n / \sum w_{2}=0.108 ; \sum \Delta \varepsilon / \sum w_{2}=0.374 ; \sum \Delta d / \sum w_{2}=0.465$
$10^{7} \Delta B=0$ for concentrations up to $w_{2}=4718 \times 10^{-5}$

Table 2.
Polarisations, dipole moments, and molar Kerr constants (from observations on solutions in benzene at 25°).

Solute	$\alpha \varepsilon_{1}$	β	γ	δ	$\begin{aligned} & \infty P_{2} \\ & \text { (c.c.) } \end{aligned}$	$\begin{gathered} R_{\mathrm{D}} \\ \text { (c.c.) } \end{gathered}$		$\mu_{\text {D }}{ }^{\text {b }}$	$\infty\left({ }_{\mathrm{m}} K_{2}\right) \times 10^{12}$
NPh_{3}	$0 \cdot 609{ }^{\text {c }}$	$0 \cdot 222{ }^{\text {c }}$	$0 \cdot 110^{\text {c }}$	$1.422_{4}{ }^{\text {c }}$	$93.0{ }^{\text {c }}$	$83.2{ }^{\text {c }}$	$81 \cdot 1$	$0.52{ }^{\text {c }}$	$+33.3{ }^{\text {c }}$
PPh_{3}	1.39	0.236	0.084	-5.07	136.7	$86 \cdot 6$	$87 \cdot 3$	1.50	-100
AsPh_{3}	0.935	0.332	0.075	-1.77	123.5	88.2	$89 \cdot 9$	1.23	$-37 \cdot 6$
SbPh_{3}	0.571	$0 \cdot 406$	0.075	-0.49	$109 \cdot 4$	$92 \cdot 8$	$92 \cdot 6$	0.77	-6.6
BiPh_{3}	$0 \cdot 374$	$0 \cdot 532$	0.072	0	101.1	96.3	$97 \cdot 1$	0	+71

${ }^{\text {a }}$ Calculated by addition of bond refractions in Vogel (ref. 2, p. 531) and Gillis (ref. 3, p. 24). ${ }^{b}$ Calculated on the assumption that ${ }_{\mathrm{D}} P^{\prime}=1 \cdot 05 R_{\mathrm{D}}$. "Quoted from Aroney and Le Fèvre (ref. 4, p. 3602).
the Tables are explained in ref. 1, pp. 280-283. For benzene at $25^{\circ}, \varepsilon_{1}=2 \cdot 2725, d_{1}=0.87378$, $\left(n_{\mathrm{D}}\right)_{1}=1.4973$, and $B_{1}=0.410 \times 10^{-7}$ (Na light) .

Previous Measurements.-Dipole-moment determinations made before 1948 as listed by Wesson ${ }^{5}$ in the M.I.T. Tables (solvent in each case, benzene) have been recalculated on the basis ${ }_{\mathrm{D}} P=1.05 R_{\mathrm{D}}: \mathrm{NPh}_{3}, 0 ;{ }^{6} \mathrm{PPh}_{3}, 1 \cdot 40,{ }^{6} 1.39 ;{ }^{7} \mathrm{AsPh}_{3}, 0.98 ;{ }^{6} \mathrm{SbPh}_{3}, 0.34 ;{ }^{6} \mathrm{BiPh}_{3}, 0 .{ }^{6}$ Since 1948 the following additional moments (recomputed on the same basis) have been recorded (also in benzene): $\mathrm{NPh}_{3}, 0.55,{ }^{8} 0.47,{ }^{9} 0.47 ;{ }^{10} \mathrm{PPh}_{3}, \mathbf{1} \cdot 36 .{ }^{10}$ No determinations of molar Kerr constants for these substances appear in the literature.

Discussion

The ellipsoid of polarisability for each molecule MPh_{3} (where $\mathrm{M}=\mathrm{N}, \mathrm{P}, \mathrm{As}, \mathrm{Sb}, \mathrm{Bi}$) is specified completely by the three principal half-axes, b_{1}, b_{2}, and b_{3}. If b_{1} is located along the three-fold symmetry axis (the direction of action of the permanent dipole moment), then $b_{2}=b_{3}, \mu_{1}=\mu_{\mathrm{obs} .}, \mu_{2}=\mu_{3}=0$, and the usual expressions for the molar Kerr constant and the electronic polarisation simplify to ${ }^{1,11}$

$$
\begin{align*}
{ }_{\mathrm{m}} K^{\mathrm{MPh}_{\mathbf{s}}} & =2 \pi \boldsymbol{N}\left[2_{\mathrm{D}} P\left(b_{1}-b_{2}\right)^{2} / 45_{\mathrm{E}} P \boldsymbol{k} T+2 \mu^{2}\left(b_{1}-b_{2}\right) / 45 \boldsymbol{k}^{2} T^{2}\right] / 9 \tag{1}\\
{ }_{\mathrm{E}} P^{\mathrm{MPh}_{\mathbf{s}}} & =4 \pi \boldsymbol{N}\left(b_{1}+2 b_{2}\right) / 9, \tag{2}
\end{align*}
$$

where ${ }_{\mathrm{D}} P$ and ${ }_{\mathrm{E}} P$ are the distortion and the electronic polarisations, respectively.
Table 3.
Principal polarisability semi-axes of the molecules MPh_{3}.*

* Bond and molecular polarisabilities are quoted throughout in 10^{-23} c.c. units.

Aroney and Le Fèvre ${ }^{4}$ give $R_{\infty}\left(={ }_{\mathrm{E}} P\right)$ for triphenylamine as 78.6 c.c. from extrapolation of the R_{D} and R_{G}, values. As the literature contains no dispersion data for the other molecules or for the bonds M-C, the electronic polarisations have been estimated via the equation

$$
{ }_{\mathrm{E}} P^{\mathrm{MPh}}=3\left({ }_{\mathrm{E}} P^{\mathrm{C}_{\mathbf{0}} \mathrm{H}_{\mathbf{t}}}-{ }_{\mathrm{E}} P^{\mathrm{C}-\mathrm{H}}+0.95 R_{\mathrm{D}}^{\mathrm{M}-\mathrm{C}}\right),
$$

where ${ }_{E} P^{C_{\bullet}}{ }^{\mathrm{B}_{\mathrm{B}}}$ and ${ }_{\mathrm{E}} P^{\mathrm{C}-\mathrm{H}}$ are as listed by Le Fèvre and Steel ${ }^{12}$ and $R_{\mathrm{D}}{ }^{M-\mathrm{C}}$ as by Gillis (ref. 3, p. 24). Values of ${ }_{\mathrm{E}} \mathrm{PMPh}_{3}$ thus derived are: $80.8\left(\mathrm{PPh}_{3}\right), 83.4\left(\mathrm{AsPh}_{3}\right), 85.9\left(\mathrm{SbPh}_{3}\right), 90 \cdot 2$ $\left(\mathrm{BiPh}_{3}\right)$. Solution of the simultaneous equations (1) and (2) leads to two sets of polarisability semi-axes, b_{1} and b_{2}, for each molecule; these are listed in Table 3.

Component Bond and Group Polarisability Semi-axes.-The phenyl group semi-axes, derived by subtracting the contribution of one $\mathrm{C}-\mathrm{H}$ link (for which $b_{\mathrm{L}}{ }^{\mathrm{C}-\mathrm{H}}=b_{\mathrm{T}}{ }^{\mathrm{C}-\mathrm{H}}=b_{\mathrm{V}}{ }^{\mathrm{C}-\mathrm{H}}=$ $0.064)$ from the anisotropic polarisabilities of benzene, are $b_{1}{ }^{\mathrm{Ph}}=b_{2}{ }^{\mathrm{Ph}}=1.056, b_{3}{ }^{\mathrm{Ph}}=0.672$. Aroney and Le Fèvre ${ }^{13}$ have specified the " effective " N-C bond polarisability semi-axes
${ }^{1}$ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261.
${ }^{2}$ Vogel, Cresswell, Jeffery, and Leicester, J., 1952, 514.
${ }^{3}$ Gillis, " Bond Refractions of Single Covalencies," Tech. Note 51, Defence Standards Laboratories, Maribyrnong, Vic., Australia; Rev. Pure Appl. Chem., 1960, 10, 21.
${ }^{4}$ Aroney and Le Fèvre, $J ., 1960,3600$.
${ }^{5}$ Wesson, "Tables of Electric Dipole Moments," Technology Press, M.I.T., Cambridge, Mass., 1948.
${ }^{6}$ Bergmann and Schütz. Z. phys. Chem., 1932, B, 19, 401.
${ }^{7}$ Phillips, Hunter, and Sutton, J., 1945, 146.
${ }^{8}$ Leonard and Sutton, J. Amer. Chem. Soc., 1948, 70, 1564.
${ }^{9}$ Cowley, J., 1952, 3557.
${ }^{10}$ Klages and Langpape, Z. Elektrochem., 1959, 63, 533.
${ }^{11}$ Le Fèvre, " Dipole Moments," 3rd edn., Methuen, London, 1953.
12 Le Fèvre and Steel, Chem. and Ind., 1961, 670.
${ }^{13}$ Aroney and Le Fèvre, $J ., 1958,3002$.

Table 4.
Estimated longitudinal and transverse polarisabilities of the bonds $\mathrm{M}-\mathrm{C}$.

	$\mathrm{P}-\mathrm{C}$	As-C	$\mathrm{Sb}-\mathrm{C}$	$\mathrm{Bi}-\mathrm{C}$
	$0 \cdot 137$	$0 \cdot 170$	$0 \cdot 202$	0.262
$\mathrm{B}\left\{b_{\text {L }}{ }^{\mathrm{M}-\mathrm{O}}\right.$	$0 \cdot 116$	$0 \cdot 130$	$0 \cdot 165$	$0 \cdot 187$
$\mathrm{B}\left\{b_{\mathrm{T}^{\text {M }}} \mathrm{MC}\left(=b_{V}^{\mathrm{M}-\mathrm{C}}\right)\right.$	$0 \cdot 147$	$0 \cdot 190$	$0 \cdot 221$	$0 \cdot 299$

in trimethylamine as $b_{\mathrm{L}}{ }^{\mathrm{N}-\mathrm{C}}=0.057, b_{\mathrm{T}}{ }^{\mathrm{N}-\mathrm{C}}=b_{\mathrm{V}}{ }^{\mathrm{N}-\mathrm{C}}=0.069$, the method of resolution of the molecular polarisabilities into $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bond components alone being such that the nitrogen " lone-pair" contribution is included in the $\mathrm{N}-\mathrm{C}$ bond estimates; the assumption is made that the $\mathrm{N}-\mathrm{C}$ bond ellipsoids thus described are axially symmetric about the intercentre line. For the other bonds $\mathrm{M}-\mathrm{C}$ only one equation in $b_{\mathrm{L}}{ }^{\mathrm{M}-\mathrm{C}}$ and $b_{\mathrm{T}}{ }^{\mathrm{M}-\mathrm{C}}$ is available:

$$
{ }_{\mathrm{E}} P^{\mathrm{M}-\mathrm{C}}=0.95 R_{\mathrm{D}}{ }^{\mathrm{M}-\mathrm{C}}=4 \pi \boldsymbol{N}\left(b_{\mathrm{L}}{ }^{\mathrm{M}-\mathrm{C}}+2 b_{\mathrm{T}}{ }^{\mathrm{M}-\mathrm{C}}\right) / 9
$$

so that a direct evaluation cannot be effected. Table 4 lists possible values of the $\mathrm{M}-\mathrm{C}$ bond polarisabilities; the estimates in line A follow if we take each $\mathrm{M}-\mathrm{C}$ link to be isotropically polarisable; the longitudinal polarisabilities in line B are derived via the empirical relation of Le Fèvre: ${ }^{14}$

$$
10^{24} b_{\mathrm{L}}{ }^{\mathrm{M}-\mathrm{C}}=0 \cdot 140+0 \cdot 156 d^{3}
$$

where d, the internuclear distance, is the sum of the covalent radii listed in ref. 15, p. 246 (cf. ref. 16, M 154 and M 157). Estimates of $b_{\mathrm{L}}{ }^{\mathrm{M}-\mathrm{C}}$ obtained by substitution of the M-C stretching frequencies listed in refs. 17 and 18 into Le Fèvre's 1959 equation ${ }^{19}$ are improbably high.

Table 5.
Polarisability semi-axes and molar Kerr constants calculated for models 1 and 2 of the molecules MPh_{3}.

	Model 1 ($\phi=0^{\circ}$)				Model $2\left(\phi=90^{\circ}\right.$)		
	$\angle \mathrm{C}-\mathrm{M}-\mathrm{C}$	b_{1}	$b_{2}\left(=b_{3}\right)$	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$	b_{1}	$b_{2}\left(=b_{3}\right)$	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$
NPh_{3}	116° a	3.392 ${ }^{\prime}$	$2.978{ }^{\text {f }}$	$+20.9$	$2.287{ }^{\prime}$	$3.530{ }^{\prime}$	$+40 \cdot 2$
PPh_{3}	101° b	$3 \cdot 578$	3.017	$+155$	$2 \cdot 663$	$3 \cdot 474$	-169
AsPh_{3}	$96^{\circ} \mathrm{c}$	3.678	3.118	+109	2.830	$3 \cdot 542$	$-93 \cdot 6$
SbPh_{3}	$113^{\circ}{ }^{\text {d }}$	3.775	$3 \cdot 219$	$+51.8$	2.707	$3 \cdot 753$	$-13 \cdot 8$
BiPh_{3}	120°	3.953	3-384	$+16.2$	2.801	3.960	+67.1

a From electron-diffraction measurements on triphenylamine vapour ${ }^{20}$ at 200°. ${ }^{b}$ From dipolemoment determinations ${ }^{7}$ (an alternative, but less credible value of 117° is also quoted in ref. 7). ${ }^{c}$ By electron diffraction. ${ }^{21}{ }^{d}$ By dipole moments. ${ }^{22}$. From an X-ray analysis of triphenylbismuthine. ${ }^{23} f$ These differ from the calculated values (Va) and (Vb) given in ref. 4, which were derived by using a bond angle $\mathrm{C}-\mathrm{N}-\mathrm{C}$ of 114° as in ref. 8 and which contain no allowance for exaltation (the $\Delta b_{\text {observed }}$ was subsequently resolved along the three principal axes in the following manner: $\Delta b_{1}=0$, $\left.\Delta b_{3}=\Delta b_{3}=\Delta b_{\text {obs. }} / 2\right)$; we prefer to regard $\Delta b_{\text {obs. }} / 3$ as an incremental increase in the longitudinal polarisability of each $\mathrm{N}-\mathrm{C}$ link; the overall effect of these refinements is negligible.

Molecular Conformations.-Initially we examine, for each molecule MPh_{3}, the extreme conformations represented by $\phi=0^{\circ}$ (see Fig. I, in which the planes of the benzene rings intersect along the line of action of $\mu_{\text {resultant }}$), and $\phi=90^{\circ}$, where the benzene rings have been rotated about the $\mathrm{M}-\mathrm{C}$ bonds 90° respectively from their dispositions in Fig. 1.

[^0]Molecular polarisabilities can be calculated for these models by addition of component bond and group semi-axes (providing the bond angles $\mathrm{C}-\mathrm{M}-\mathrm{C}$ are known), thence we can evaluate ${ }_{\mathrm{m}} K_{\text {calc. }}$. for each model on the assumption that the resultant dipole moment in each case is equal to $\mu_{\text {obs. }}$ and acts along the symmetry axis. Table 5 summarises the results.

Fig. 1.

Fig. 2.

Comparison of the calculated values of Table 5 with those of Tables 2 and 3 shows that none of the models so far examined correctly describes the solute species.

We next consider structures, intermediate between models 1 and 2 , for which $0^{\circ}<\phi<90^{\circ}$ (see Fig. 2); for these
$b_{1 \text { obs. }}=3\left[\left(b_{1}{ }^{\mathrm{Ph}}+b_{\mathrm{L}}{ }^{\mathrm{M}-\mathrm{C}}+\Delta b_{\text {obs. }} / 3\right) \cos ^{2} \theta+\left(b_{\mathrm{T}}{ }^{\mathrm{M}-\mathrm{C}}+b_{2}{ }^{\mathrm{Ph}} \cos ^{2} \phi+b_{3}{ }^{\mathrm{Ph}} \sin ^{2} \phi\right) \sin ^{2} \theta\right]$
The angle θ in each case is calculable from the corresponding bond angle $\mathrm{C}-\mathrm{M}-\mathrm{C}$ as set out in Table $5 ; \Delta b_{\text {obs. }}$ is zero for all molecules MPh_{3} except triphenylamine. If now the $\mathrm{M}-\mathrm{C}$ links (apart from $\mathrm{N}-\mathrm{C}$ for which we know $b_{\mathrm{L}}{ }^{\mathrm{N}-\mathrm{C}}=0.057$ and $b_{\mathrm{T}^{\mathrm{N}}-\mathrm{C}}=0.069$) are assumed to be isotropic with $b_{\text {mean }}{ }^{M-C}$ having the values of line A in Table 4, then the two sets of experimental $b_{1}{ }^{\mathrm{MPh}}{ }^{\prime}$'s of Table 3 (A and B) lead to two estimates of ϕ for each molecule.

Table 6.
Values of ϕ calculated from equation (3).

	NPh_{3}	PPh_{3}	AsPh_{3}	SbPh_{3}	BiPh_{3}
ϕ (from results A in Table 3)	61.5°	59°	52.5°	40°	19.5°

ϕ (from results B in Table 3) No solution ${ }^{\text {a }}$ No solution No solution No solution 48°
${ }^{a}$ Equation (3) reduces to $\sin ^{2} \phi>1$; the values of $b_{1 \text { obs. }}$. leading to such a solution are either impossibly small or impossibly great and do not correspond to any conformation between the limits of $\phi=0^{\circ}$ and $\phi=90^{\circ}$.

Table 7.
Calculated values of ϕ, assuming anisotropic $\mathrm{M}-\mathrm{C}$ link polarisabilities.

		PPh_{3}	AsPh_{3}	SbPh_{3}	BiPh_{3}
ϕ (from results A in Table 3)	$\ldots \ldots .$.	$59 \cdot 5^{\circ}$	$53 \cdot 5^{\circ}$	$42 \cdot 5^{\circ}$	27°
ϕ (from results B in Table 3)	$\ldots \ldots .$.	No solution	No solution	No solution	$53 \cdot 5^{\circ}$

Alternatively, if we substitute in equation (3) the M-C link polarisability specifications of line B in Table 4 (as predicted by Le Fèvre's 1958 rule), ${ }^{14}$ then the corresponding estimates of ϕ are as in Table 7. Only in the case of triphenylbismuthine is ϕ sensitively dependent on the anisotropy of the M-C links. If we average out the values ϕ in Tables 6 and 7 we obtain: $62^{\circ}\left(\mathrm{NPh}_{3}\right), 59^{\circ}\left(\mathrm{PPh}_{3}\right), 53^{\circ}\left(\mathrm{AsPh}_{3}\right), 41^{\circ}\left(\mathrm{SbPh}_{3}\right), 23^{\circ} \pm 4^{\circ}$ or $51^{\circ} \pm 3^{\circ}$ $\left(\mathrm{BiPh}_{3}\right)$. Wetzel ${ }^{23}$ has shown from an X-ray analysis of triphenylbismuthine that, in the solid state, $\phi=31^{\circ} \pm 4^{\circ}$, which suggests that our smaller estimate is the more correct. An uncertainty of $\pm 0 \cdot 1 \mathrm{D}$ in each of the dipole moments listed in Table 2 leads to a maximum error (\pm) in ϕ of $7^{\circ}, 4^{\circ}, 3^{\circ}, 2^{\circ}$, and 1°, respectively. In triphenylamine, delocalisation of the nitrogen " lone-pair" electrons accounts for the almost non-basic nature of this
molecule (see ref. 24, p. 46), for the observed exaltation of refraction, and for the small dipole moment ($\mu_{o b s}{ }^{\mathrm{NPh}_{s}}$ can be regarded as the vector sum of μ_{a} and μ_{m}, where μ_{a} approximates to μ^{NMe} and μ_{m} is the mesomeric moment). For substances $\mathrm{MPh}_{3}(\mathrm{M}=\mathrm{P}$ to Bi) the bond lengths $\mathrm{M}-\mathrm{C}$ increase and the benzene-ring orientations tend towards that in Fig. l; so that inter-ring resonance effects ($\mu_{\mathrm{m}}{ }^{\mathrm{MPh}_{2}}$) are less significant than in triphenylamine. Cullen and Hochstrasser ${ }^{25}$ have concluded, from a study of the ultraviolet spectra of these substances, that " nitrogen is the only member of the series which has a fully conjugated triphenyl derivative." Significantly, the observed dipole moment diminishes from $1.50 \mathrm{D}\left(\mathrm{PPh}_{3}\right)$ to zero $\left(\mathrm{BiPh}_{3}\right)$ with increase of electropositivity of the central metalloid atom.

The gifts mentioned in the text, and the award of a Commonwealth Research Scholarship to J. D. S., are gratefully acknowledged.

University of Sydney, Sydney, N.S.W., Australia. [Received, August 14th, 1962.]
${ }^{24}$ Kemmitt, Nuttall, and Sharp, $J_{\text {., }}$ 1960, 46.
${ }^{25}$ Cullen and Hochstrasser, J. Mol. Spectroscopy, 1960, 5, 118.

[^0]: 14 Le Fèvre, Proc. Chem. Soc., 1958, 283.
 ${ }^{15}$ Pauling, " The Nature of the Chemical Bond," 3rd edn., Cornell University Press, 1960.
 ${ }^{16}$ Sutton," Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Special Publ. No. 11, 1958.
 ${ }^{17}$ Halmann, Spectrochim. Acta, 1960, 16, 407.
 18 Rosenbaum, Rubin, and Sandberg, J. Chem. Phys., 1940, 8, 366.
 ${ }^{19}$ Le Fèvre, Proc. Chem. Soc., 1959, 363.
 ${ }^{20}$ Sasaki, Kimura, and Kubo, J. Chem. Phys., 1959, 31, 477.
 ${ }^{21}$ Kuz Min and Kamai, Doklady Akad. Nauk S.S.S.R., 1950, 73, 709.
 ${ }^{22}$ Campbell, J., 1955, 3116.
 ${ }^{23}$ Wetzel, Z. Krist., 1942, 104, 305.

